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We find the static multisoliton solutions of the baby Skyrme model on the two-sphere for topological charges
1�B�14. Numerical full-field results show that the charge-one Skyrmion is spherical, the charge-two Skyr-
mion is toroidal, and Skyrmions with higher charge all have point symmetries which are subgroups of O�3�. We
find that a rational map ansatz yields very good approximations to the full-field solutions. We point out a strong
connection between the discrete symmetries of our solutions and those of corresponding solutions of the
three-dimensional Skyrme model.
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I. INTRODUCTION

The Skyrme model �1� is a nonlinear theory of pions in
�3+1� dimensions with topological soliton solutions called
Skyrmions. The existence of stable solutions in this model is
a consequence of the nontrivial topology of the mapping M
of the physical space into the field space at a given time,
M : S3→SU�2��S3, where the physical space R3 is com-
pactified to S3 by requiring the spatial infinity to be equiva-
lent in each direction. The topology which stems from this
one-point compactification allows the classification of maps
into equivalence classes, each of which has a unique con-
served quantity called the topological charge.

Although Skyrmions were originally introduced to de-
scribe baryons in three spatial dimensions �1�, they have
been shown to exist for a very wide class of geometries �2�,
and are now playing an increasing role in other areas of
physics as well.

Apart from the original three-dimensional �3D� model,
which exhibits very structured solitonic solutions �for a re-
view see �3��, other Skyrme models are known to yield so-
lutions with intricate structures. The baby Skyrme model,
first introduced by �4�, is a two-dimensional version of the
original Skyrme model, with R2 as its domain. As its older
brother, it is known to give rise, under certain settings, to
structured multi-Skyrmion configurations �4–8�. Studies of
other Skyrme models defined on curved domains, such as
cylinders, two-spheres, and three-spheres can also be found
in the literature �9–13�. Although most of these models are
used as a simplification or as “toy” models of the full 3D
model, they also have physical significance on their own,
having several applications in condensed-matter physics,
specifically in context of quantum Hall systems �14,15�,
where they arise as low-energy excitations near ferromag-
netic filling factors.

In the present paper we consider a baby Skyrme model on
the two-sphere. This type of model has been studied in
�10,11�, where only rotationally symmetric configurations
have been considered. We compute the full-field minimal
energy solutions of the model up to charge 14 and show that

they exhibit complex multi-Skyrmion solutions closely re-
lated to the Skyrmion solutions of the 3D model with the
same topological charge. To obtain the minimum energy con-
figurations, we apply two completely different methods. One
is a full-field relaxation method, with which exact numerical
solutions of the model are obtained. The other approach is a
rational map approximation scheme, which as we show
yields very good approximate solutions. We discuss these
methods in detail in Sec. III.

In an exact analogy to the 3D Skyrme model, our results
show that the charge-one Skyrmion has a spherical energy
distribution, the charge-two Skyrmion is toroidal, and Skyr-
mions with higher charge all have point symmetries which
are subgroups of O�3�. The symmetries of these solutions are
the same as those of the 3D Skyrmions. As we shall see, this
is not a coincidence.

II. BABY SKYRME MODEL ON THE TWO-SPHERE

The model in question is a baby Skyrme model in which
both the domain and target are two-spheres. It consists of a
triplet of real scalar fields �= ��1 ,�2 ,�3� subject to the con-
straint ��=1. The Lagrangian density is simply

L =
1

2
������ +

�2

2
���������2 − ����������������� ,

�1�

with metric ds2=dt2−d�2−sin2 �d	2, where � is the polar
angle ��0,
� and 	 is the azimuthal angle ��0,2
�. The
Lagrangian of this model is invariant under rotations in both
the domain and the target spaces, possessing an O�3�domain
�O�3�target, symmetry. The first term in the Lagrangian is the
kinetic term and the second term, of the fourth order in de-
rivatives, is the 2D analog of the Skyrme term �4�. In flat
two-dimensional space a third potential term is necessary to
ensure the existence of stable finite-size solutions. Without it,
the repulsive effect of the Skyrme term causes the Skyrmions
to expand indefinitely. In the present model, however, the
finite geometry of the sphere acts as a stabilizer, so a poten-
tial term is not required. Furthermore, stable solutions exist
even without the Skyrme term. In the latter case, we obtain
the well known O�3� �or CP1� nonlinear sigma model �16�.

The field � in this model is an S2→S2 mapping. The
relevant homotopy group of this model is 
2�S2�=Z, which
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implies that each field configuration is characterized by an
integer topological charge B, the topological degree of the
map �, which in spherical coordinates is given by

B =
1

4

� d�

����� � �	��
sin �

, �2�

where d�=sin �d�d	.
Static solutions within each topological sector are ob-

tained by minimizing the energy functional

E =
1

2
� d�������2 +

1

sin2 �
��	��2�

+
�2

2
� d�� ���� � �	��2

sin2 �
� . �3�

Before proceeding, it is worth noting here that setting �=0 in
Eq. �3� yields the energy functional of the O�3� nonlinear
sigma model. The latter has analytic minimal energy solu-
tions within every topological sector, given by

� = �sin f���cos�B	�,sin f���sin�B	�,cos f���� , �4�

where f���=cos−1	1−2�1+ � tan � /2�2B�−1
 with  being
some positive number �16�. These solutions are not unique,
as other solutions with the same energy may be obtained by
rotating Eq. �4� either in the target or in the domain spaces.
The energy distributions of these solutions in each sector are
rotationally symmetric, with total energy EB=4
B.

We have found that analytic solutions also exist for the
energy functional �3� with the Skyrme term only. They too
have the rotationally symmetric form �4� with f���=� and
total energy EB=4
B2. They can be shown to be the global
minima by the following Cauchy-Schwartz inequality:

� 1

4

� d�

����� � �	��
sin �

�2

� � 1

4

� d��2�� 1

4

� d�� ��� � �	�

sin �
�2� . �5�

The left-hand side is simply B2 and the first term in paren-
theses on the right-hand side integrates to 1. Noting that the
second term in the right-hand side is the Skyrme energy
�without the �2 /2 factor�, the inequality reads E�4
B2,
with equality for the rotationally symmetric solutions.

III. STATIC SOLUTIONS

In general, if both the kinetic and Skyrme terms are
present, static solutions of the model cannot be obtained ana-
lytically. The Euler-Lagrange equations derived from the en-
ergy functional �3� are nonlinear PDE’s, so the minimal en-
ergy configurations can only be obtained with the aid of
numerical techniques. This is with the exception of the
B=1 Skyrmion, which has an analytic “hedgehog” solution

��B=1� = �sin � cos 	,sin � sin 	,cos �� , �6�

with total energy E
4
 =1+ �2

2 .
For Skyrmions with higher charge, we find the minimal

energy configurations by utilizing a full-field relaxation

method, described in more detail below. In parallel, we also
apply the rational map approximation method, originally de-
veloped for the 3D Skyrme model and directly compare the
results with the relaxation method. This method is also dis-
cussed below.

A. Full-field relaxation method

For the relaxation method, the domain S2 is discretized to
a spherical grid—100 grid points for � and 100 points for 	.
The relaxation process begins by initializing the field triplet
� to a rotationally symmetric configuration

�initial = �sin � cos B	,sin � sin B	,cos �� , �7�

where B is the topological charge of the Skyrmion in ques-
tion. The energy of the baby Skyrmion is then minimized by
repeating the following steps: a point ��m ,	n� on the grid is
chosen at random, along with one of the three components of
the field ���m ,	n�. The chosen component is then shifted by
a value �� chosen uniformly from the segment �−�� ,���
where ��=0.1 initially. The field triplet is then normalized
and the change in energy is calculated. If the energy de-
creases, the modification of the field is accepted and other-
wise it is discarded. The procedure is repeated while the
value of �� is gradually decreased throughout the procedure.
This is done until no further decrease in energy is observed.

One undesired feature of this minimization scheme is that
it can get stuck at a local minimum. This problem can be
resolved by using the “simulated annealing” algorithm
�17,18�, which in fact has been successfully implemented
before, in obtaining the minimal energy configurations of
static two- and three-dimensional Skyrmions �19�. The algo-
rithm is comprised of repeated applications of a Metropolis
algorithm with a gradually decreasing temperature, based on
the fact that when a physical system is slowly cooled down,
reaching thermal equilibrium at each temperature, it will end
up in its ground state. This algorithm, however, is much
more expensive in terms of computer time. We therefore em-
ploy it only in part, just as a check on our results, which
correspond to a Metropolis algorithm of zero temperature.

As a further verification, we set up the minimization
scheme using different initial configurations and grids of dif-
ferent sizes �80�80 and 200�200� for several � and B val-
ues. This was done to make sure that the final configurations
are independent of the discretization and cooling scheme.
Accuracy was also verified by checking the conservation of
the topological charge B throughout the minimization pro-
cess, yielding 

Bobserved

B −1�10−6.

B. Rational map ansatz

Computing the minimum energy configurations using the
full nonlinear energy functional is a procedure which is both
time consuming and resource hungry. To circumvent these
problems, the rational map ansatz scheme has been devised.
First introduced in �20�, this scheme has been used in obtain-
ing approximate solutions to the 3D Skyrme model using
rational maps between Riemann spheres. Although this rep-
resentation is not exact, it drastically reduces the number of
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degrees of freedom in the problem, allowing computations to
take place in a relatively short amount of time. The results in
the case of the 3D Skyrme model are known to be quite
accurate.

Application of the approximation begins with expressing
points on the base sphere by the Riemann sphere coordinate
z=tan�

2ei	. The complex-valued function R�z� is a rational
map of degree B between Riemann spheres

R�z� =
p�z�
q�z�

, �8�

where p�z� and q�z� are polynomials in z, such that
max�deg�p� ,deg�q��=B, and p and q have no common fac-
tors. Given such a rational map, the ansatz for the field triplet
is

� = � R + R̄

1 + R2
,i

R − R̄

1 + R2
,
1 − R2

1 + R2
� . �9�

It can be shown that rational maps of degree B correspond to
field configurations with charge B �20�. Substitution of the
ansatz �9� into the energy functional �3� results in the simple
expression

1

4

E = B +

�2

2
I , �10�

with

I =
1

4

� � 1 + z2

1 + R2
�dR

dz
��4 2idzdz̄

�1 + z2�2 . �11�

Note that in the �→0 limit, where our model reduces to the
O�3� nonlinear sigma model, the rational maps become, in
fact, exact solutions and the minimal energy value E=4
B is
attained. Furthermore, the minimal energy is reached inde-
pendently of the specific details of the map �apart from its
degree�, i.e., all rational maps of a given degree are minimal
energy configurations in the topological sector corresponding
to this degree. This is a reflection of the scale and the rota-
tional invariance of the O�3� model.

In the general case where ��0, the situation is different.
Here, minimizing the energy �10� requires finding the ratio-
nal map which minimizes the functional I. As we discuss in
the next section, the expression for I given in Eq. �11� is
encountered in the application of the rational map in the
context of 3D Skyrmions, where the procedure of minimiz-
ing I over all rational maps of the various degrees has been
used �20–22�.

Here we redo the calculations, using a relaxation method.
To obtain the rational map of degree B that minimizes I, we
start off with a rational map of degree B, with the real and
imaginary parts of the coefficients of p�z� and q�z� assigned
random values from the segment �−1,1�. As in the full-field
relaxation method discussed above, solutions are obtained by
relaxing the map until a minimum of I is reached.

IV. RELATION TO THE 3D SKYRME MODEL

In the 3D Skyrme model, the rational map ansatz can be
thought of as taken in two steps. First, the radial coordinate

is separated from the angular coordinates by taking the
SU�2� Skyrme field U�r ,� ,	� to be of the form

U�r,�,	� = exp�if�r����,	� · �� , �12�

where �= ��1 ,�2 ,�3� are Pauli matrices, f�r� is the radial
profile function subject to the boundary conditions f�0�=

and f���=0, and ��� ,	� : S2�S2 is a normalized vector
which carries the angular dependence of the field. In terms of
the ansatz �12�, the energy of the Skyrme field is

E =� 4
f�2r2dr +� 2�f�2 + 1�sin2 fdr� ������2

+
1

sin2 �
��	��2�d� +� sin4 f

r2 dr� ���� � �	��2

sin2 �
d� .

�13�

Note that the energy functional �13� is actually the energy
functional of our model �3� once the radial coordinate is
integrated out. Thus, our 2D model can be thought of as a 3D
Skyrme model with a frozen radial coordinate.

The essence of the rational map approximation is the as-
sumption that ��� ,	� takes the rational map form �9�, which
in turn leads to a simple expression for the energy

E = 4
� �r2f�2 + 2B�f�2 + 1�sin2 f + Isin4 f

r2 �dr , �14�

where I is given in Eq. �11�. As in our case, minimizing the
energy functional requires �as a first step, followed by find-
ing the profile function f�r�� minimizing I over all maps of
degree B.

Since the symmetries of the 3D Skyrmions are determined
solely by the angular dependence of the Skyrme field, it
should not be too surprising that the solutions of the model
discussed here share the symmetries of the corresponding
solutions of the 3D Skyrme model.

V. RESULTS

The two approaches discussed in Sec. III have been ap-
plied separately to obtain the static solutions for charges
2�B�14 �the charge-one solution has an analytic represen-
tation, as discussed in Sec. III�. This was done for several �
values within the range 0.01��2�0.2, although solutions
with different �’s turned out to be qualitatively similar, as
will be discussed at the end of this section.

As discussed in the previous section, the configurations
obtained from the full-field relaxation method were found
to have the same symmetries as corresponding multi-
Skyrmions of the 3D model with the same charge. The
B=2 solution turned out to be axially symmetric, whereas
higher-charge solutions were all found to have point symme-
tries which are subgroups of O�3�. For B=3 and B=12,
the Skyrmions have a tetrahedral symmetry. The B=4 and
B=13 Skyrmions have a cubic symmetry, and the B=7 is
dodecahedral. The other Skyrmion solutions have dihedral
symmetries: For B=5 and B=14 a D2d symmetry, for B=6,
9, and 10 a D4d symmetry, for B=8 a D6d symmetry, and for
B=11 a D3h symmetry. In Fig. 1 we show the energy distri-
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butions of the obtained solutions for �2=0.05, and in Fig. 2
we plot the actual fields of the lower-charge solutions.

While for solutions with B�8 the energy density �and
also the charge density� is distributed in distinct peaks, for
solutions with higher charge it is spread in a much more
complicated manner. The total energies of the solutions �di-
vided by 4
B� are listed in Table I, along with the symme-
tries of the solutions �again with �2=0.05�.

Application of the rational map ansatz yielded results with
only slightly higher energies, only about 0.3%−3% above
the full-field results. The calculated values of I were found
to agree with those obtained in �21� in the context of 3D
Skyrmions. For 9�B�14, the rational map approximation
yielded slightly less symmetric solutions than the full-field
ones. Considering the relatively small number of degrees of
freedom, this method all-in-all yields very good approxima-
tions. The total energies of the solutions obtained with the
rational map approximation is also listed in Table I.

The effect of the parameter � on the solutions of the
model is best understood if one first considers the effect of
rescaling on the energy functional �3�. Assigning an arbitrary
radius r to the base sphere, the kinetic term is found to be

invariant, whereas the Skyrme term, proportional to �2,
scales like �r−2. Hence � has the role of the inverse of the
radius of the sphere; large values of � correspond to a small
sphere, and vice versa. In accord with the above arguments,
numerical results indicate that increasing the value of � �or
alternatively shrinking the base sphere�, results in the
energy-density peaks becoming smeared. The Skyrmions,
having less space for themselves, superimpose, and as a con-
sequence, distort one another. The symmetries of the ob-
tained solutions, however, remain the same. The above is

FIG. 1. The energy distributions of the multi-Skyrmion solu-
tions for charges 2�B�14 ��2=0.05�.

FIG. 2. Plots of the field configurations � in charge sectors
1�B�4. Here, the base sphere is mapped to a circle and the ar-
rows represent the first two components of the field triplet, namely,
��1 ,�2�. The color of the arrows represents the sign of �3; black for
negative values and gray otherwise.

TABLE I. Total energies �divided by 4
B� of the multisolitons
of the model for �2=0.05.

Charge Total energy Total energy Difference Symmetry of

B �full-field� �rational maps� in % the solution

2 1.071 1.073 0.177 Toroidal

3 1.105 1.113 0.750 Tetrahedral

4 1.125 1.129 0.359 Cubic

5 1.168 1.179 0.958 D2d

6 1.194 1.211 1.426 D4d

7 1.209 1.217 0.649 Icosahedral

8 1.250 1.268 1.406 D6d

9 1.281 1.304 1.771 D4d

10 1.306 1.332 1.991 D4d

11 1.337 1.366 2.224 D3h

12 1.360 1.388 2.072 Tetrahedral

13 1.386 1.415 2.137 Cubic

14 1.421 1.459 2.712 D2
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illustrated in Fig. 3, where we have plotted the energy distri-
bution of the B=3 Skyrmion for different values of �.

VI. SUMMARY AND CONCLUSION

We have studied the baby Skyrme model on the two-
sphere, obtaining the minimal energy configurations for all
charges up to B=14, using both the full-field relaxation
method and the rational map approximation scheme. For
each charge we have identified the symmetry and measured
the energy of the minimal energy Skyrmion. The solutions
turned out to yield very structured configurations, exhibiting
the same symmetries as the corresponding solutions of the
3D Skyrme model.

We have explained the reason for these similarities be-
tween the symmetries of the two models and in the process
we have exhibited a strong connection between them. The
model discussed in this paper may be thought of as the 3D
Skyrme model with a frozen radial coordinate. In that sense,

our computations may serve as an additional corroboration
of results obtained for the 3D Skyrmions.

In addition, we have shown that the rational map ansatz
provides a very good approximate description to the true
solutions, also for those with high topological charge. The
energies of the solutions computed in the rational maps ap-
proximation are only slightly higher than the full-field solu-
tions, and their symmetries, in most cases, are the same. This
suggests that rational maps may be used to construct good
approximations to multi-Skyrmion solutions in this model in
a rather simple way.

We believe that this work may provide a useful tool in the
study of 3D Skyrmions, as our model shares great similari-
ties with the 3D model, especially in terms of multi-
Skyrmion symmetries. The fact that the model discussed
here is two dimensional makes it simpler to study and per-
form computations with, when compared with the 3D
Skyrme model.

Some of the results obtained in the present work may, at
least to some extent, also be linked to the baby Skyrmions
which appear in two-dimensional electron gas systems, ex-
hibiting the quantum Hall effect. As briefly noted in the In-
troduction, baby Skyrmions arise in quantum Hall systems as
low-energy excitations of the ground state, near ferromag-
netic filling factors �notably 1 and 1/3� �14,15�. There, the
Skyrmion is a twisted two-dimensional configuration of spin,
and its topological charge corresponds to the number of
times the spin rotates by 2
. While for the electron gas, the
stability of the soliton arises from a balance between the
electron-electron Coulomb energy and the Zeeman energy, in
our model the repulsive Skyrme-term energy is balanced by
the underlying geometry �i.e., the sphere�. The connection
between these two models suggests the possible existence of
very structured spin textures in quantum Hall systems, al-
though a more detailed analysis of this analogy is in order.
We hope to be able to report on these matters in forthcoming
publications.
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